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The rigorous theory of reflection and diffraction at the end of a semi-infinite dielectric circular cylinder is
developed. An exact solution of this problem is found by the use of fictitious electric and magnetic current
sheets located at the end of the cylinder. The solution has the form of the Fourier integral along the integration
path in the complex plane of propagation constants. The theory assumes an arbitrary ratio between the cylinder
radius and the wavelength and hence it can be used for the description of the nanowire optical properties. The
case when the incident wave is a transverse magnetic �TM�/ transverse electric �TE� waveguide mode is
analyzed in detail. It is found that such a mode is completely converted into TE/TM-polarized field on
reflection from the nanowire facet. It is shown that the corresponding angular diffraction pattern forms a cone
which is specific for a given waveguide mode. The obtained results can be used for the determination of the
threshold gain and quality factor as well as Fabry-Pérot modes of a nanolaser.
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I. INTRODUCTION

Recently, significant progress has been made in fabrica-
tion and investigation of submicron-sized optical fibers
which are known as nanowires or nanofibers. They can be
grown from either inorganic1–5 or organic6–8 semiconductor
materials and can be obtained by means of drawing from
silica.9 It has been demonstrated that such structures possess
promising waveguiding9–12 and photoluminescence2,13 prop-
erties and can act as a nanolaser.3–5,11,14–16 The optical mea-
surements with nanofibers include registration of the emitted
or scattered light angular distributions in both far-field and
near-field microscopy.17–20 On the other hand, nanowires
themselves can be used as optical probes in a novel form of
subwavelength microscopy.21

Despite progress in experimental techniques, the lack of
theory which could describe the nanowire optical response
adequately prevents from fundamental understanding of ex-
perimental results. The first theoretical model which has
been used to treat the interaction between a nanowire and a
light beam dates back to Lord Rayleight.22 It assumes that a
nanowire is a circular dielectric cylinder of infinite length.
One can modify this model to account for a reflecting
substrate,23 but the restriction imposed on the nanowire
length still remains. Such a model does not allow one to
describe effects at the nanowire ends, i.e., reflection and dif-
fraction of light. Reflections at the nanowire facets, however,
play a key role in lasing and the reflection coefficient deter-
mines the threshold gain and quality factor. Besides that, the
phase of the reflection coefficient dictates the Fabry-Pérot
modes in a nanolaser resonator. The estimates based on the
Fresnel formula are obviously inadequate when the nanowire
diameter is comparable with or less than the light wave-
length.

Although the reflection and diffraction of waveguide
modes in a nanowire can be calculated numerically using the
finite-difference time-domain method,24,25 such an approach
does not allow comprehensive analysis of the problem. On
the other hand, an exact solution, if available, can provide a

test for numerical calculations. In the present paper we find
an exact solution for the electromagnetic field when a wave-
guide mode propagates toward the nanowire end. We obtain
an analytical expression for the reflection coefficient as well
as for the coefficients of transformation of the incident wave
into the other waveguide modes. We find also the angular
distribution of the diffracted electromagnetic field in the me-
dium surrounding the nanowire.

It should be noted that the diffraction problems allow ex-
act rigorous solutions in closed form only in some special
cases. The larger part of them has been solved for metallic
�perfectly conducting� objects. They include diffraction by a
wedge �and by a semi-infinite plane, in particular�, by a slit
or by a circular aperture in an infinite plane and the compli-
mentary problems of diffraction by an infinite ribbon or by a
circular disk, respectively. A comprehensive overview of
those works is given in Ref. 26. Another class of problems
deals with diffraction at the open end of an empty semi-
infinite waveguide with perfectly conducting walls, either
plane or cylindrical.27 For dielectric obstacles, there are well-
known solutions obtained for an infinite circular cylinder and
a sphere.22 An exact rigorous solution has been found also
for an arbitrary dielectric spheroid, although it requires much
computational efforts.28 We thus demonstrate in this paper
that diffraction at the end of a dielectric cylinder is among
these few problems. Let us note that the solutions obtained
for particles of a simple shape can be used to simulate light
scattering from micro- and nanostructures29 as well as to get
insight into the tip-sample interaction in scanning near-field
optical microscopy.30,31

The paper is organized as follows: In Sec. II we describe
the theoretical model which is used in the paper. We intro-
duce the fictitious electric and magnetic current sheets which
simulate the electromagnetic field diffracted at the nanowire
end. Sections III and IV deal with general theory of reflec-
tion and diffraction at the nanowire end, respectively. These
results are applied for the particular case of symmetric inci-
dent waveguide modes in Sec. V. The main results are sum-
marized in Sec. VI.
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II. THEORETICAL MODEL

A. Hertz vectors

We shall model a nanowire by a semi-infinite dielectric
cylinder of radius a with the dielectric function �2 sur-
rounded by medium with the dielectric function �1 ��2��1�.
Let the z axis of the cylindrical coordinate system �r ,� ,z� be
directed along the nanowire axis; the nanowire extends to-
ward negative z values and is terminated at z=0 �Fig. 1�.
Assuming that a waveguide mode having the frequency �
propagates from z=−� toward the nanowire end, we shall
calculate the electromagnetic field both reflected from the
nanowire facet and scattered into surrounding medium.

We shall describe the electromagnetic fields in terms of
the electric and magnetic Hertz vectors, �e and �m, which
correspond to the e-type �or transverse magnetic �TM�� and
m-type �or transverse electric �TE�� waves, respectively.32

Then, implying that all field vectors have the temporal de-
pendence given by exp�−i�t�, the electric and magnetic field
amplitudes can be found as follows �in Gaussian units�:

E = ��� · �e� + kj
2�e + i

�

c
� � �m, �1�

H = ��� · �m� + kj
2�m − i� j

�

c
� � �e �2�

with c as the speed of light in vacuum and

kj =
�

c
�� j �3�

as the modulus of the wave vector of light outside the nano-
wire �j=1� or inside it �j=2�.

The incident waveguide mode is defined for an infinite
cylinder and is described by the Hertz vectors � j

�i�e and
� j

�i�m. Due to the cylindrical symmetry of the problem these
vectors only have a z component given by the equations33

� jz
�i�e�r,�,z� =

aj0

qj0
2 Zn�qj0r�e−in�ei	0z �4�

and

� jz
�i�m�r,�,z� =

bj0

qj0
2 Zn�qj0r�e−in�ei	0z. �5�

Here Zn�
� is a cylindrical function defined by the condition

Zn�qjr� = � Jn�q2r� if r � a

Hn
�1��q1r� if r � a ,

� �6�

with Jn and Hn
�1� as the Bessel function of the first kind and

the Hankel function of the first kind, respectively, 	0 is the
propagation constant of the incident wave, n is an integer,
and

qj0 = �kj
2 − 	0

2. �7�

The corresponding field amplitudes obtained with the use
of Eqs. �1� and �2� are given in Appendix A The coefficients
a10, a20, b10, and b20 in Eqs. �4� and �5� are chosen so that the
tangential field components would be continuous across the
boundary r=a. For the purpose of definition of the reflection
coefficient, we shall introduce also the incident wave ampli-
tude as follows:

� j
�i� � � jz

�i�e + � jz
�i�m. �8�

B. Fictitious current sheets

Consider the boundary conditions for the field compo-
nents which have to be satisfied at z=0. Let E� and H� be the
electric and magnetic fields “reflected” from the nanowire
facet into the half-space z�0 whereas E� and H� be the ones
“transmitted” into the half-space z�0. Then these fields
obey the following equations at z=0:

Et� − Et� = Et
�i�, �9�

Ht� − Ht� = Ht
�i�, �10�

where the subscript t denotes the vector components tangen-
tial to the plane z=0. Following Schelkunoff,34 consider now
the fields E and H composed of E� and H� at z�0 and of E�
and H� at z�0. Then, according to Eqs. �9� and �10�, one
can imagine the fields E and H as being induced by the
fictitious electric and magnetic current sheets located at z
=0 with the surface current densities

Ke =
c

4

Ht

�i� �11�

and

Km = −
c

4

Et

�i�, �12�

respectively. The corresponding Hertz vectors either in the
nanowire interior �j=2� or in its exterior �j=1� can be found
as the solutions of inhomogeneous wave equations with the
sources determined by Eqs. �11� and �12�. They have the
following form:32

� j
e�R� =

i

� j�
	

Sj

Ke�R��
eikj
R−R�



R − R�

dR�, �13�

� j
m�R� =

i

�
	

Sj

Km�R��
eikj
R−R�



R − R�

dR�, �14�

FIG. 1. Geometry of the problem.
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where it is assumed that the currents Ke and Km are taken in
the rectangular coordinates �x ,y ,z�. Here the radius-vector
R� runs over the surface Sj in the plane z�=0 �plane S�. For
z�0, S2 is the nanowire facet �r�a� and S1=S−S2; for z
�0, the surface Sj coincides with S.

The distance between the observation point R and the
elementary current located at R� can be written in the cylin-
drical coordinates as


R − R�
 = �d2 + z2, �15�

where

d = �r2 + r�2 − 2rr� cos�� − ��� . �16�

Using the identity35

eikj
�d2+z2

�d2 + z2
=

i

2
	

−�

�

H0
�1��qjd�ei	zd	 �17�

and the theorem of addition for the cylindrical functions,

H0
�1��qjd� = �

s=−�

�

Js�qjr��Hs
�1��qjr��e−is��−���, �18�

with

qj = �kj
2 − 	2, 0 � Arg�qj� � 
 , �19�

and r�=min�r ,r��, r�=max�r ,r��, one can express quanti-
ties �13� and �14� in terms of the series of the Bessel and
Hankel functions.

The fictitious surface currents being written in the cylin-
drical coordinates acquire the form

K��r,�� = ��r
��r�er + ��

��r�e��e−in�, �20�

where the superscript � denotes either electric ��=e� or
magnetic ��=m� current, er and e� are the unit vectors of the
coordinate system and the components �r

� and ��
� are given

in Appendix B. Substituting Eq. �20� in Eqs. �13� and �14�
and carrying out the integration over �� with the use of rela-
tions �17� and �18� one obtains the Hertz vectors in the form
of the Fourier integrals

� j
��r,�,z� =

1

2

	

−�

�

�̃ j
��r,�;	�ei	zd	 , �21�

with

�̃ j
��r,�;	� = −


2

���
e−in�	

Lj

�p−
��r��Jn−1�qjr��Hn−1

�1� �qjr��

+ p+
��r��Jn+1�qjr��Hn+1

�1� �qjr���r�dr�, �22�

where �e=� j, �m=1,

Lj = ��a,�� if j = 1

�0,a� if j = 2,
� �23�

for z�0, L1= �0,�� for z�0, and we have introduced the
functions

p�
� �r� = ��r

��r� � i��
��r���er � ie�� . �24�

The electromagnetic field amplitudes dictated by the
Hertz vectors �Eq. �21�� have the form of the Fourier integral
as well. The corresponding Fourier-transformed amplitudes
for z�0 are given in Appendix C.

The following consideration depends on whether one con-
siders the field reflected from the nanowire end or that dif-
fracted into surrounding medium. We shall therefore discuss
these cases separately.

III. REFLECTION OF A WAVEGUIDE MODE

Although the Hertz vectors given by Eqs. �13� and �14�
satisfy the necessary boundary conditions at z=0 they do not
provide, however, continuity of tangential field components
at the nanowire surface r=a at z�0. To fulfill this require-
ment, we shall add to � j

e and � j
m a solution of the homoge-

neous wave equation

�� jz
� + kj

2� jz
� = 0 �25�

and we shall impose the boundary conditions onto the total
electromagnetic field.

We shall seek the general solution of Eq. �25� in the form
of the Fourier integral �see Eq. �21��. Then the quantities

�̃ jz
� �r ,� ;	�ei	z satisfy the wave equation in the cylindrical

coordinates and can be found therefore as follows:

�̃ jz
e �r,�;	� =

1

qj
2 �

m=−�

�

ajm�	�Zm�qjr�e−im�, �26�

�̃ jz
m�r,�;	� =

1

qj
2 �

m=−�

�

bjm�	�Zm�qjr�e−im�, �27�

where 0�Arg�qj��
 and the functions Zm�
� are given by
Eq. �6�. The electromagnetic field amplitudes, F��r ,� ,z�, de-
termined by the Hertz vectors � jz

� can be written in the form
of the Fourier integral as well with the Fourier-transformed

amplitudes F̃��r ,� ;	� given in Appendix A. Now the
Fourier-transformed Hertz vectors of the total reflected elec-
tromagnetic field can be written in the form

�̃ j
�r�� = �̃ j

� + �̃ jz
� ez. �28�

The terms with different indices m in expansions �26� and
�27� are linearly independent of each other. Therefore to sat-
isfy boundary conditions for the total reflected electromag-
netic field it is sufficient to consider only the terms with m
=n. The continuity of the tangential field components at r
=a is reduced to the conditions imposed on the field Fourier-
transformed amplitudes and can be written in a matrix form
as follows:

M̂�	�A� �	� = B� �	� , �29�

where
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M̂�	� =�
�	n/q2

2a�Jn�q2a� − �i�/cq2�Jn��q2a� − �	n/q1
2a�Hn

�1��q1a� �i�/cq1�Hn
�1���q1a�

Jn�q2a� 0 − Hn
�1��q1a� 0

�ik2
2c/�q2�Jn��q2a� �	n/q2

2a�Jn�q2a� − �ik1
2c/�q1�Hn

�1���q1a� − �	n/q1
2a�Hn

�1��q1a�

0 Jn�q2a� 0 − Hn
�1��q1a�


 , �30�

A� �	� =�
a2n�	�
b2n�	�
a1n�	�
b1n�	�


 , �31�

and

B� �	� =�
�Ẽ��	�

�Ẽz�	�

�H̃��	�

�H̃z�	�

 , �32�

with �Ẽ��	�� Ẽ1��a ;	�− Ẽ2��a ;	� and �H̃��	�
� H̃1��a ;	�− H̃2��a ;	�; the quantities Ẽj��r ;	� and

H̃j��r ;	� are given in Appendix C. The solution of Eq. �29�
is found as

Ak�	� =
Dk�	�
D�	�

, �33�

where k numerates the components of the column A� , D�	�
�det M̂�	�, and Dk is the determinant of the matrix obtained

from M̂ by replacing its kth column with the column given

by B� .
It is worthwhile to note that one can consider the Fourier

representation of the electromagnetic field as a superposition
of the plane waves exp�i	z�. An integration over the real
quantities 	 thus corresponds to the waves propagating to-
ward both z=−� and z= +�. To obtain a complete solution
of the problem one has to consider 	 in the integrand of the
Fourier integrals as a complex quantity and replace the inte-
gration along the real axis by that along a path of integration
in the complex plane. This corresponds to taking into ac-
count the waves with complex propagation constants, i.e.,
those waves which describe transients in the vicinity of the
nanofiber facet. To define the Fourier integral onto the com-
plex plane of 	 it is necessary to analytically continue the
Fourier-transformed quantities given by Eqs. �22�, �26�, and
�27� to the values of qj such that −
�Arg�qj��0. This can
be done with the use of the relations

Jn�− 
� = �− 1�nJn�
� , �34�

Hn
�1��− 
� = �− 1�n+1Hn

�2��
� , �35�

where Hn
�2� is the Hankel function of the second kind. Let us

note that formula �35� provides also an analytic continuation

of Eq. �17� onto the whole complex plane of 	.
As it follows from Eqs. �22�, �26�, and �27�, the functions

�̃ j
�r�� have branch points at 	= �kj and to ensure a single-

valued solution we make cuts on the complex plane of 	
drawn along the real axis from the branch points to ��. The
functions Ak�	� have poles given by the zeros of the denomi-
nator D�	� which we denote as 	p. The real quantities 	p
correspond to waveguide �bound� modes and they are dis-
posed between k1 and k2, whereas those having an imaginary
part Im�	p��0 describe decaying modes �see Ref. 36 for the
detail�. As the determinant D�	� is an even function of 	, the
quantities −	p are also the poles of Ak�	�. Figure 2 shows
these poles along with the cuts and the accepted path of
integration, C. The path C can be represented as a sum of the
path embracing the left cut and running along its edges, and
the one which runs along the lower edges of both cuts toward
the positive direction of the real axis �not shown�. The latter
path can be closed by a semicircle of an infinite radius in the
lower half-plane.37 The obtained contour is reduced to a
number of infinitesimal circles around the poles −	d. The
resulting contour C− is also shown in Fig. 2. It completely
lies in the left half-plane Re 	�0 and hence it corresponds
to the waves reflected from the nanofiber facet. As a result,
the Hertz vectors of the reflected field have the following
form:

� j
�r�� = −

i

2�
b

Res��̃ jzu
� �− 	b� + �̃ jzl

� �− 	b��e−i	bzez

− i�
d

Res��̃ jz
� �− 	d��e−i	dzez + � j

�, �36�

with

FIG. 2. Complex plane of 	. The cuts and poles are shown by
bold lines and dots, respectively. For simplicity, only a single wave-
guide mode and a single decaying mode are indicated. The integra-
tion paths C, C− and C+ are introduced in the text.
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� j
��z� =

1

2

P	

−�

−k1

���̃ ju
� �	� − �̃ jl

��	��

+ ��̃ jzu
� �	� − �̃ jzl

� �	��ez�ei	zd	 , �37�

where the symbol P in front of the integral means its princi-
pal value, Res�F�	�� is a residual of the function F at a point
	, the subscripts u and l denote the values of the correspond-
ing functions on the upper and lower edges of the cut, re-
spectively, and the subscripts b and d numerate bound and
decaying modes, respectively. The values of the functions on
different edges of the cut are related to each other according
to the following rules:38

Fu�	;q1,q2� = � Fl�	;− q1,q2� if − k2 � 	 � − k1

Fl�	;− q1,− q2� if − � � 	 � − k2,
�
�38�

and we accept that Im�q1�, Im�q2��0 on the lower edge of
the cut.

Equation �36� gives an exact solution for the reflected
electromagnetic field. It is interesting to consider this quan-
tity at large distances from the nanowire end where the tran-
sient terms vanish. The term � j

� in Eq. �36� can be estimated
using integration by parts. In the leading order in 1 /z one
obtains

� j
��z� �

1


z2��d�̃ ju
�

d	
�

	=−kj

e−ikjz + �d�̃ jzu
�

d	
�

	=−k1

e−ik1zez� .

�39�

Here, the first term in the brackets is the far-field limit for the
radiation field created by the fictitious electric or magnetic
surface currents located at z=0, whereas the second term
originates from the fictitious currents at the outer nanowire
surface. The terms in the second sum in Eq. �36� decay as
exp�−
Im�	d�
z� and the sum over waveguide modes is domi-
nant at large distances from the nanowire end.

In the limit z→−�, the amplitude of the reflected wave
has the only nonzero z component, � j

�r��� jz
�r�e+� jz

�r�m, which
can be written in the form

� j
�r� = r00�̃ j

�i�e−i	0z + �
b�0

��̃ jb
e + �̃ jb

m �e−i	bz, �40�

where �̃ j
�i� and �̃ jb

� are defined by the equations

� j
�i��r,z� = �̃ j

�i��r�ei	0z, �41�

�̃ jb
� �r� = −

i

2
Res��̃ jzu

� �r;− 	b� + �̃ jzl
� �r;− 	b�� . �42�

All the Hertz vectors here depend on � as exp�−in�� and
this argument has been omitted for brevity. Equation �40�
gives the backscattered wave with r00 the far-field reflection
coefficient for the incident waveguide mode. This quantity
does not depend neither on r nor on j and is reduced to the
form

r00 = −
i

2
�Res�a2n�− 	0;q1� + a2n�− 	0;− q1� + b2n�− 	0;q1�

+ b2n�− 	0;− q1����a20 + b20�−1. �43�

The amplitudes �̃ j
� describe transformation of the incident

wave into the other waveguide modes on reflection. It is
reasonable to characterize its efficiency by the far-field trans-
formation coefficient,

R0b = −

	
0

2
 	
0

�

�Sz
�b��r,���rdrd�

	
0

2
 	
0

�

�Sz
�i��r,���rdrd�

, �44�

where S�b� and S�i� are the Poynting vectors of the reflected
bth waveguide mode and incident wave, respectively, and the
angular brackets mean the time averaging.

IV. DIFFRACTION OF A WAVEGUIDE MODE

To calculate the electromagnetic field diffracted into sur-
rounding medium one has to know the transmitted electric
E� and magnetic H� fields in the plane z=0. These fields are
found from Eqs. �9� and �10� where the reflected fields E�
and H� originate from the Hertz vectors � j

�r�e and � j
�r�m, Eq.

�36�. According to the Schelkunoff’s formulation of the
Equivalence Theorem,34 the diffracted field can be found as
it would be induced by the fictitious surface electric and
magnetic current densities

Le =
c

4

Ht� �45�

and

Lm = −
c

4

Et�, �46�

respectively, located in the plane z=0. The further consider-
ation resembles that in Sec. II B where the current densities
Ke and Km must be replaced by Le and Lm, respectively. The

Fourier-transformed amplitudes, �̃1
�d���	�, of the diffracted

field Hertz vectors are given by Eq. �22� for j=1, where the
vector functions p�

� �r� are replaced by p�
� �r�+q�

� �r� with

q�
� �r� = ��r

��r� � i��
��r���er � ie�� . �47�

The quantities �r
��r� and ��

��r�, which have been intro-
duced here, are represented in Appendix D. Then the exact
solution for the diffracted field, �1

�d��, is given by the Fourier
integral along the path of integration C+ which lies com-
pletely in the right half-plane Re 	�0.39

Let us consider this solution in the far zone, where not
only k1

�r2+z2�1 but also q1r�1. In this limit, the quantity

�̃1
�d���	� is reduced to the form

�̃1
�d���r,�;	� �

i
3/2

�
� 2

q1r
e−i�2n+1�
/4�S+

��	�

− S−
��	��e−in�eiq1r, �48�

where
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S�
� =

1

��
	

0

�

�p�
� �r�� + q�

� �r���Jn�1�q1r��r�dr�. �49�

Introducing the angle of diffraction, �, to the observation
point R so that �see Fig. 1�

r = R sin �, z = R cos � , �50�

we consider R=�r2+z2 as a large parameter. Then the Fou-

rier integral of �̃1
�d���	� can be calculated with the use of the

steepest descent method. Deforming the path C+ so that it
would run across the saddle point 	s=k1 cos � �Fig. 2�, one
obtains

�1
�d���R,�,�� �

i


�
e−i�2n+1�
/4�S+

��	s� − S−
��	s��

eik1R

R
e−in�.

�51�

Repeating this consideration for the field diffracted into
the half-space z�0, one concludes that Eq. �51� is also valid
in the far zone outside the nanowire.

From here one can calculate the electromagnetic field
components in the far zone. In the leading order in 1 /R the
field is purely transversal �ER=HR=0� and the power dif-
fracted within the elementary solid angle d�=sin �d�d� is
given by

dP��� �

�2�1

3/2

8c3 �
G����
2 + 
G����
2�d� , �52�

where the functions

G���� = ��1�S−r
e − S+r

e �cos � − i�S−r
m + S+r

m � �53�

and

G���� = i��1�S−r
e + S+r

e � + �S−r
m − S+r

m �cos � �54�

determine the � dependence of the field components E� and
E�, respectively, and all the quantities S�r

� are taken at 	
=	s. In the following, we shall characterize the angular dis-
tributions of the diffracted field polarized parallel to the vec-
tors e� ��=� ,�� by the functions

����� =

�2�1

3/2

8c3 
G����
2�	
0

2
 	
0

�

�Sz
�i��r,���rdrd��−1

.

�55�

V. REFLECTION AND DIFFRACTION OF SYMMETRIC
WAVEGUIDE MODES

The results obtained above are valid for arbitrary incident
waveguide modes. They become, however, considerably
simplified in the case of symmetric modes for which n=0.
The Hertz vector of such modes is either transverse magnetic
�e-type� or transverse electric �m-type�. The determinant of

the matrix M̂, Eq. �30�, is reduced to the form

D = DTMDTE �56�

with

DTM =
�

c
� �1

q1
J0�q2a�H1

�1��q1a� −
�2

q2
J1�q2a�H0

�1��q1a��
�57�

and

DTE =
�

c
� 1

q1
J0�q2a�H1

�1��q1a� −
1

q2
J1�q2a�H0

�1��q1a�� .

�58�

The zeros of DTM and DTE with respect to 	 determine the
propagation constants of TM and TE modes, respectively.
Further we shall consider these two types of modes sepa-
rately.

A. TM modes

In this case the incident wave is described by Eq. �8� with
bj0=0. Straightforward calculations with the use of equations
given in Appendix C lead to the equality

Ẽjr�r;	� = Ẽjz�r;	� = H̃j��r;	� = 0. �59�

As a result, the components of the column A� �	�, Eq. �31�,
have the form

a2n�	� = a1n�	� = 0, �60�

b2n�	� =
2
2

�q1

1

DTE
� 2i


a
�k1

2 + 	0	�P1�
e �a� + �k2

2 + 	0	�P2�
e �a�

��q2H1
�1��q1a�H0

�1��q2a� − q1H0
�1��q1a�H1

�1��q2a��� ,

�61�

b1n�	� =
2
2

�q2

1

DTE
� 2i


a
�k2

2 + 	0	�P2�
e �a� + �k1

2 + 	0	�P1�
e �a�

��q2J1�q1a�J0�q2a� − q1J0�q1a�J1�q2a��� . �62�

Here the quantities P1�
e �a� and P2�

e �a� can be written ex-
plicitly as

P1�
e �a� =

�a10

4
q10
I�H1

�1�,q10;H1
�1�,q1� , �63�

P2�
e �a� = −

�a20

4
q20
I�J1,q20;J1,q2� , �64�

where the functions I�Z�1� , p1 ;Z�2� , p2� are defined as

I�Z1
�1�,p;Z1

�2�,q� =
a

p2 − q2 �pZ2
�1��pa�Z1

�2��qa�

− qZ1
�1��pa�Z2

�2��qa�� . �65�

Note that Eqs. �59� and �60� imply that the reflected field
has a pure TE polarization. In other words, the incident TM
wave is not reflected—it is completely converted into a TE-
polarized field on reflection. This result can be understood as
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follows. According to the equations of Appendix B, the inci-
dent wave induces the fictitious currents K�

e and Kr
m in the

plane z=0. As it follows from the Biot-Savart law, the mag-
netic field associated with the current K�

e is parallel to the
vector e��R, where R is the radius-vector directed from the
location of the elementary current to the observation point.
One can formulate also an analog of the Biot-Savart law for
a fictitious magnetic current Kr

m according to which the cor-
responding electric field should be parallel to the vector er
�R. This consideration leads to the same conclusions as
Eqs. �59� and �60�.

Let us assume that only a single pair of TM and TE wave-
guide modes exists at a given frequency �. Then the incident
TM wave can be converted into a single TE mode on reflec-
tion. In this case the transformation coefficient, Eq. �44�, is
found as

R01 =
	1

4	0


b̂2n
+ �− 	1� + b̂2n

− �− 	1�
2


a20
2

�� 1

q11
2 −

1

q21
2 �J0�q21a�J2�q21a��� �2

q20
2 −

�1

q10
2 �J0

2�q20a�

−
�2��2 − �1�

�1q20
2 J1

2�q20a�

+
2�2

q20a
� 1

q10
2 −

1

q20
2 �J0�q20a�J1�q20a��−1

, �66�

where 	1 is the propagation constant of the TE mode, qj1

=�kj
2−	1

2 and b̂2n
� �	�=Res�b2n�	 ; �q1��.

The functions G���� and G����, Eqs. �53� and �54�, which
determine the diffracted field have the form

G���� = − 2�1 + cos2 ��	
0

�

��
m�r��J1�k1r� sin ��r�dr�,

�67�

G���� = −
i���1

2

�a20

q20
� �2

�1
+

	0

k1
cos ��

�I�J1,q20;J1,k1 sin ��

−
a10

q10
�1 +

	0

k1
cos ��I�H1

�1�,q10;J1,k1 sin ��� .

�68�

It follows from here that the quantity G���� is dictated by
the reflected field, whereas the quantity G���� originates
completely from the field of the incident wave. This means
that these two contributions can be separated using an ana-
lyzer oriented parallel to either the vector e� or the vector e�.

B. TE modes

In this case aj0=0 and one obtains

Ẽj��r;	� = H̃jr�r;	� = H̃jz�r;	� = 0. �69�

The components of the column A� �	�, Eq. �31�, are found as
follows:

b2n�	� = b1n�	� = 0, �70�

a2n�	� =
2i
2

c	0q1

1

DTM
�2i�1


a
�k1

2 + 	0	�P1�
e �a� − �k2

2

+ 	0	�P2�
e �a���1q2H1

�1��q1a�H0
�1��q2a�

− �2q1H0
�1��q1a�H1

�1��q2a��� , �71�

a1n�	� = −
2i
2

c	0q2

1

DTM
�2i�2


a
�k2

2 + 	0	�P2�
e �a�

+ �k1
2 + 	0	�P1�

e �a���1q2J1�q1a�J0�q2a�

− �2q1J0�q1a�J1�q2a��� , �72�

where the quantities P1�
e �a� and P2�

e �a� are given by

P1�
e �a� = −

ic	0b10

4
�1q10
I�H1

�1�,q10;H1
�1�,q1� , �73�

P2�
e �a� =

ic	0b20

4
�2q20
I�J1,q20;J1,q2� . �74�

As one can conclude from Eqs. �69� and �70�, the incident
TE wave is completely converted into a TM-polarized field
on reflection. As it has been discussed above, this can be
understood on the basis of the Biot-Savart law. The corre-
sponding transformation coefficient, Eq. �44�, in the case
where only a single pair of symmetric modes exists has the
form

R01 =
	1

4	0


â2n
+ �− 	1� + â2n

− �− 	1�
2


b20
2

��� 1

q10
2 −

1

q20
2 �J0�q20a�J2�q20a��−1

��� �2

q21
2 −

�1

q11
2 �J0

2�q21a� −
�2��2 − �1�

�1q21
2 J1

2�q21a�

+
2�2

q21a
� 1

q11
2 −

1

q21
2 �J0�q21a�J1�q21a�� , �75�

where now 	1 is the propagation constant of the TM mode
and â2n

� �	�=Res�a2n�	 ; �q1��.
For the angular distributions of the diffracted field one

obtains

G���� =
i�

2

�1 +

	0

k1
cos ���b20

q20
I�J1,q20;J1,k1 sin ��

−
b10

q10
I�H1

�1�,q10;J1,k1 sin ��� , �76�
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G���� = 2	
0

� ���
e�r��
��1

− �r
m�r�� cos ��J1�k1r� sin ��r�dr�.

�77�

Here the quantity G���� is determined by the incident wave
field, whereas the quantity G���� originates from the re-
flected field.

C. Numerical results

We shall illustrate the results obtained above for symmet-
ric waveguide modes by some numerical examples. To com-
pare our calculations with those carried out using the finite-
difference time-domain method24,25 we take the dielectric
constant of the nanowire �2=6 and �1=1 for surrounding
medium. The far-field reflection coefficient, Eq. �43�, is iden-
tically equal to zero for both TM and TE incident waveguide
modes. Figure 3 represents the far-field transformation coef-
ficient �R01, which can be compared with the “reflection co-
efficient” calculated in Ref. 24 It has been plotted in the
frequency range where only a single pair of symmetric
modes exists. The magnitude of this quantity is approxi-
mately the same as in Fig. 4 of Ref. 24 but its frequency
dependence and the ratio R01

TM /R01
TE are different. A direct

comparison, however, is not possible because that paper
deals with evolution of a wave packet which propagates
along a nanowire of finite length. As a result, the reflected
field contains, besides the far-field contribution determined
by Eq. �40�, the near-field components originating from the
slowly decreasing term � j

��z�, Eq. �37�, and the decaying
modes. Let us note that due to the nonstationary character of
the problem the modes decaying both in the z-coordinate and
in time contribute to the reflected field �see Ref. 36�.

Figure 4 shows the quantities ��, Eq. �55�, as a function
of the diffraction angle. Both dependencies display a pro-
nounced peak at some angle �m. As for symmetric modes the
field is invariant relative to the rotations around the nanowire

axis, the peak in the � dependence means that the maximum
diffracted field intensity forms a cone with the angular open-
ing 2�m. The position of this maximum differs for different
modes which allows one to determine which mode is excited
in the nanowire. Note that there is no emitted intensity along
the nanowire axis where ��0. This conclusion as well as the
positions of the diffracted field maxima is in agreement with
the results obtained in Ref. 25.

VI. CONCLUSION

In this paper, we have found an exact rigorous solution for
the problem of diffraction at the end of a dielectric cylindri-
cal nanowire. The solution has the form of the Fourier inte-
gral along a path of integration in the complex plane of
propagation constants. Deforming this path, one obtains ei-
ther the field reflected from the nanowire end or the dif-
fracted field. The general solution has been analyzed in detail
for the case of symmetric waveguide modes. A remarkable
feature of this case is a complete conversion of the incident
TM-polarized mode into a TE-polarized mode on reflection,
and vice versa. The corresponding diffracted field intensity
forms a cone the angular opening of which is specific for a
given waveguide mode. The diffracted fields originating
from the incident mode and reflected mode can be separated
by an appropriate orientation of an analyzer.

It is worthwhile to note that the knowledge of the dif-
fracted field of a definite waveguide mode allows one to find,
using the relations of reciprocity,40 the amplitude of such a
mode excited in the waveguide by an incident plane wave.

The obtained results allow one to treat also the case of a
nanowire of finite length. If at such a length the transient
terms in the field reflected from one nanowire facet can be
neglected, this field has the form of a superposition of wave-
guide modes incident at the other nanowire facet. In particu-
lar, if an incident wave is a symmetric waveguide mode it is
converted in itself after double reflection at different facets.
This implies that TM and TE modes in the nanowire will
propagate in the opposite directions. The corresponding re-

FIG. 3. Frequency dependence of the transformation coefficient.
The polarization of the incident waveguide mode is indicated in the
inset. �1=1, �2=6.

FIG. 4. Angular dependence of the diffracted field intensity cal-
culated for �a /c=1.5 , �1=1, �2=6. The polarization of the incident
waveguide mode is indicated in the inset.
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flection coefficient can be calculated using the equations of
Secs. V A and V B. The Fabry-Pérot symmetric modes in
such a resonator will be dictated by its length as well as by
the phase of the reflection coefficient.

APPENDIX A: FIELD AMPLITUDES

The field amplitudes dictated by the Hertz vectors � jz
� ez

are obtained by their substitution in Eqs. �1� and �2�. The
result has the form of the Fourier integrals with the Fourier-
transformed quantities given by the following equations �the
argument qjr of the cylindrical functions has been omitted
for brevity�:

Ẽjr = �
m=−�

� � i	

qj
Zm� ajm +

�m

cqj
2r

Zmbjm�e−im�, �A1�

Ẽj� = �
m=−�

� �	m

qj
2r

Zmajm −
i�

cqj
Zm� bjm�e−im�, �A2�

Ẽjz = �
m=−�

�

Zmajme−im�, �A3�

H̃jr = �
m=−�

� �−
ckj

2m

�qj
2r

Zmajm +
i	

qj
Zm� bjm�e−im�, �A4�

H̃j� = �
m=−�

� � ickj
2

�qj
Zm� ajm +

	m

qj
2r

Zmbjm�e−im�, �A5�

H̃jz = �
m=−�

�

Zmbjme−im�. �A6�

The field amplitudes of the incident wave, Eq. �8�, can be
written as

F�
�i��r,�,z� = F̃�

�i��r,��ei	0z, �A7�

where the quantities F̃�
�i� can be formally obtained from the

above equations if one takes a single term with m=n and
uses the substitutions

	 → 	0, qj → qj0, ajn → aj0, bjn → bj0. �A8�

APPENDIX B: FICTITIOUS CURRENT COMPONENTS
��

�

The components �r
� and ��

� which determine the fictitious
currents, Eq. �20�, are found as follows:

�r
e�r� =

c

4

�−

ckj
2n

�qj0
2 r

Zn�qj0r�aj0 +
i	0

qj0
Zn��qj0r�bj0� ,

�B1�

��
e�r� =

c

4

� ickj

2

�qj0
Zn��qj0r�aj0 +

	0n

qj0
2 r

Zn�qj0r�bj0� , �B2�

�r
m�r� = −

c

4

� i	0

qj0
Zn��qj0r�aj0 +

�n

cqj0
2 r

Zn�qj0r�bj0� ,

�B3�

��
m�r� = −

c

4

�	0n

qj0
2 r

Zn�qj0r�aj0 −
i�

cqj0
Zn��qj0r�bj0� .

�B4�

APPENDIX C: FICTITIOUS FIELD AMPLITUDES

The amplitudes of the electromagnetic field induced by
the fictitious currents in the half-space z�0 can be obtained
by inserting the Hertz vectors �Eq. �21�� into Eqs. �1� and
�2�. Their Fourier-transformed components have the form

F̃j���;	� = F̃j��	�e−in�, �C1�

where the quantities F̃j��	� are given by the equations

Ẽjr�r;	� = −

2

�
�	�	Pj�

e − i
�

c
Pj�

m �Hn−1
�1� �qjr�

+ 	�	Pj�
e − i

�

c
Pj�

m �Jn−1�qjr�

+ 	�	Qj�
e + i

�

c
Qj�

m �Hn+1
�1� �qjr�

+ 	�	Qj�
e + i

�

c
Qj�

m �Jn+1�qjr�

+
nqj

r
�Pj�

e + Qj�
e �Hn

�1��qjr�

+
nqj

r
�Pj�

e + Qj�
e �Jn�qjr� +

2i


�e
�p−r

e + p+r
e �� ,

�C2�

Ẽj��r;	� =

2

�
��ikj

2Pj�
e + 	

�

c
Pj�

m �Hn−1
�1� �qjr�

+ �ikj
2Pj�

e + 	
�

c
Pj�

m �Jn−1�qjr�

− �ikj
2Qj�

e − 	
�

c
Qj�

m �Hn+1
�1� �qjr�

− �ikj
2Qj�

e − 	
�

c
Qj�

m �Jn+1�qjr�

− i
nqj

r
�Pj�

e − Qj�
e �Hn

�1��qjr�

− i
nqj

r
�Pj�

e − Qj�
e �Jn�qjr�� , �C3�
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Ẽjz�r;	� =

2

�
qj��i	�Pj�

e − Qj�
e � +

�

c
�Pj�

m + Qj�
m ��Hn

�1��qjr�

+ �i	�Pj�
e − Qj�

e � +
�

c
�Pj�

m + Qj�
m ��Jn�qjr�� .

�C4�

Here the following functions have been introduced:

Pj�
� �r� =

1

��
	

Lj�

p−r
� �r��Jn−1�qjr��r�dr�, �C5�

Pj�
� �r� =

1

��
	

Lj�

p−r
� �r��Hn−1

�1� �qjr��r�dr�, �C6�

Qj�
� �r� =

1

��
	

Lj�

p+r
� �r��Jn+1�qjr��r�dr�, �C7�

Qj�
� �r� =

1

��
	

Lj�

p+r
� �r��Hn+1

�1� �qjr��r�dr�, �C8�

with the intervals of integration defined as

Lj� = ��a,r� if j = 1

�0,r� if j = 2,
� �C9�

and

Lj� = ��r,�� if j = 1

�r,a� if j = 2.
� �C10�

The amplitudes H̃jr, H̃j� and H̃jz can be formally obtained

from Ẽjr, Ẽj� and Ẽjz, respectively, using the substitutions

Pj�
e → Pj�

m , Qj�
e → Qj�

m ,

Pj�
m → − � jPj�

e , Qj�
m → − � jQj�

e ,

�e → �m, p�r
e → p�r

m , �C11�

where the subscript � acquires the values �or�. Note that

P1�
� �a� = Q1�

� �a� = P2�
� �a� = Q2�

� �a� = 0. �C12�

APPENDIX D: FICTITIOUS CURRENT COMPONENTS
��

�

The fictitious currents components at z= +0 are deter-
mined by the reflected field. Deforming the path of integra-
tion C− so that it would run along the imaginary axis in the
	-plane one obtains

�r
e�r� = −

c

4

	

−i�

i� �H̃jr�r;	� −
ckj

2n

�qj
2r

Zn�qjr�ajn�	�

+
i	

qj
Zn��qjr�bjn�	��d	 , �D1�

��
e�r� = −

c

4

	

−i�

i� �H̃j��r;	� +
ickj

2

�qj
Zn��qjr�ajn�	�

+
	n

qj
2r

Zn�qjr�bjn�	��d	 , �D2�

�r
m�r� =

c

4

	

−i�

i� �Ẽjr�r;	� +
i	

qj
Zn��qjr�ajn�	�

+
�n

cqj
2r

Zn�qjr�bjn�	�d	� , �D3�

��
m�r� =

c

4

	

−i�

i� �Ẽj��r;	� +
	n

qj
2r

Zn�qjr�ajn�	�

−
i�

cqj
Zn��qjr�bjn�	��d	 , �D4�

where the quantities Ẽjr, Ẽj�, H̃jr, and H̃j� are given in Ap-
pendix C and the coefficients ajn and bjn are determined by
Eqs. �31� and �33�. Here the integrands do not have poles
along the chosen path of integration.
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